🔍 What is EDA?
EDA is the process of summarizing, visualizing, and investigating datasets to:
- Understand structure & patterns
- Detect anomalies or outliers
- Test assumptions
- Guide feature engineering & model selection
🧱 EDA Core Steps
1. Understanding the Dataset
- Know the context & columns
- Data types: numerical, categorical, datetime, text
- Identify target vs features
- Use .head(), .info(), .describe() in Python
2. Handling Missing Values
- Identify missing data (isnull(), sum())
-
Strategies:
- Remove rows/columns
- Impute (mean, median, mode, KNN, etc.)
- Use indicators
3. Univariate Analysis
Analysis of individual variables:
-
Numerical: histograms, boxplots, KDE plots
- Key stats: mean, median, std, skewness
-
Categorical: bar plots, value counts
- Mode, frequency
4. Bivariate/Multivariate Analysis
- Numerical vs Numerical: scatter plots, correlation matrix, pairplot
- Categorical vs Numerical: box plots, violin plots, groupby summaries
- Categorical vs Categorical: crosstabs, stacked bar charts
5. Outlier Detection
- Boxplots
- Z-score / IQR method
- Domain knowledge
6. Feature Engineering Ideas
- Transform skewed data (log, sqrt)
- Create new features (ratios, time since)
- Encode categorical variables (One-Hot, Label Encoding)
- Normalize or scale data
📊 EDA Visualization Tools (Python)
Tool | Common Uses |
---|---|
Matplotlib | Basic plotting |
Seaborn | Statistical plots (e.g., boxplot, pairplot, heatmap) |
Pandas | Quick summaries (.plot(), .value_counts()) |
Plotly | Interactive visualizations |
Missingno | Visualizing missing data |
📁 Example EDA Checklist (in Python)
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Load data df = pd.read_csv('your_data.csv') # Overview print(df.info()) print(df.describe()) print(df.isnull().sum()) # Univariate sns.histplot(df['age'], kde=True) sns.boxplot(x=df['income']) # Bivariate sns.scatterplot(x='age', y='income', data=df) sns.heatmap(df.corr(), annot=True, cmap='coolwarm') # Categorical sns.countplot(x='gender', data=df) sns.boxplot(x='gender', y='income', data=df)
🎯 Final Tips for Great EDA
- Tell a story: What does the data say?
- Look for relationships: Which features affect the target?
- Document assumptions & hypotheses.
- Use visuals to communicate insights.
📚 Want more?
I can help you with:
- A full Python notebook for EDA
- Practice dataset walkthroughs (e.g., Titanic, Iris, Housing)
- Industry-specific EDA (healthcare, finance, marketing)
- Tools like Pandas-Profiling, Sweetviz, Dtale
Let me know how you'd like to dive deeper — code, examples, or tutorials?
...