Skip to Content

Exploratory Data Analysis (EDA)


🔍 What is EDA?

EDA is the process of summarizing, visualizing, and investigating datasets to:

  • Understand structure & patterns
  • Detect anomalies or outliers
  • Test assumptions
  • Guide feature engineering & model selection

🧱 EDA Core Steps

1. Understanding the Dataset

  • Know the context & columns
  • Data types: numerical, categorical, datetime, text
  • Identify target vs features
  • Use .head(), .info(), .describe() in Python

2. Handling Missing Values

  • Identify missing data (isnull(), sum())
  • Strategies:
    • Remove rows/columns
    • Impute (mean, median, mode, KNN, etc.)
    • Use indicators

3. Univariate Analysis

Analysis of individual variables:

  • Numerical: histograms, boxplots, KDE plots
    • Key stats: mean, median, std, skewness
  • Categorical: bar plots, value counts
    • Mode, frequency

4. Bivariate/Multivariate Analysis

  • Numerical vs Numerical: scatter plots, correlation matrix, pairplot
  • Categorical vs Numerical: box plots, violin plots, groupby summaries
  • Categorical vs Categorical: crosstabs, stacked bar charts

5. Outlier Detection

  • Boxplots
  • Z-score / IQR method
  • Domain knowledge

6. Feature Engineering Ideas

  • Transform skewed data (log, sqrt)
  • Create new features (ratios, time since)
  • Encode categorical variables (One-Hot, Label Encoding)
  • Normalize or scale data

📊 EDA Visualization Tools (Python)

Tool Common Uses
Matplotlib Basic plotting
Seaborn Statistical plots (e.g., boxplot, pairplot, heatmap)
Pandas Quick summaries (.plot(), .value_counts())
Plotly Interactive visualizations
Missingno Visualizing missing data

📁 Example EDA Checklist (in Python)

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load data
df = pd.read_csv('your_data.csv')

# Overview
print(df.info())
print(df.describe())
print(df.isnull().sum())

# Univariate
sns.histplot(df['age'], kde=True)
sns.boxplot(x=df['income'])

# Bivariate
sns.scatterplot(x='age', y='income', data=df)
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')

# Categorical
sns.countplot(x='gender', data=df)
sns.boxplot(x='gender', y='income', data=df)

🎯 Final Tips for Great EDA

  • Tell a story: What does the data say?
  • Look for relationships: Which features affect the target?
  • Document assumptions & hypotheses.
  • Use visuals to communicate insights.

📚 Want more?

I can help you with:

  • A full Python notebook for EDA
  • Practice dataset walkthroughs (e.g., Titanic, Iris, Housing)
  • Industry-specific EDA (healthcare, finance, marketing)
  • Tools like Pandas-Profiling, Sweetviz, Dtale

Let me know how you'd like to dive deeper — code, examples, or tutorials?

...