Skip to Content

LoRA & QLoRA for Fine-Tuning LLMs

Start writing here...Β 

Absolutely β€” LoRA and QLoRA are game-changers in making LLM fine-tuning more affordable, accessible, and efficient. Here's a comprehensive, updated breakdown perfect for teaching, blogging, or implementing fine-tuning in your own projects.

🧠 LoRA & QLoRA for Fine-Tuning LLMs

Efficient, Low-Rank Adaptation for Modern Language Models

πŸ” TL;DR: What Are LoRA & QLoRA?

Term Stands for Purpose
LoRA Low-Rank Adaptation Fine-tune small parts of a model without touching all weights
QLoRA Quantized LoRA Combine LoRA with quantization to fine-tune large models on consumer hardware (e.g. 1 GPU)

Instead of updating billions of parameters, update just a few thousand using low-rank matrices β€” and it still works!

🧬 LoRA: Low-Rank Adaptation of LLMs

🧩 Motivation

  • Full fine-tuning is expensive and resource-hungry
  • Most downstream tasks don’t need a whole new model
  • LoRA fine-tunes only the task-specific parts

πŸ› οΈ How It Works

  • Freezes the original model weights (W)
  • Injects trainable low-rank matrices (A, B) into attention layers
  • During training, updates only A and B

Wβ€²=W+Aβˆ—BW' = W + A * B

Where:

  • W = original weights (frozen)
  • A, B = low-rank trainable matrices (e.g. rank 8)

πŸ“¦ Benefits

  • Up to 100x fewer trainable parameters
  • No need to modify the full model
  • Easily merge fine-tuned weights later (or keep them modular)

⚑ QLoRA: Fine-Tuning on a Single GPU

Introduced in the 2023 paper by Dettmers et al., QLoRA enhances LoRA with:

  1. 4-bit quantization of base model (via bitsandbytes)
  2. LoRA adapters on top of the quantized model
  3. Paged Optimizer: Offloads to CPU RAM when VRAM is tight

πŸ’» Hardware Impact

  • Fine-tune 33B parameter models on a single 24GB GPU
  • Save up to 96% of memory usage

πŸ”§ Tools & Libraries

Tool Role
πŸ€— transformers Load pre-trained models
πŸ€— peft (Parameter-Efficient Fine-Tuning) Add LoRA / QLoRA adapters
bitsandbytes 8-bit & 4-bit quantization
πŸ€— trl Training scripts with RLHF & SFT
accelerate Easy multi-GPU & mixed precision training

πŸ§ͺ Training Workflow (LoRA/QLoRA)

1. Choose a base model (e.g., LLaMA-2, Mistral, Phi, Gemma)

2. Apply quantization (QLoRA) or not (LoRA)

3. Inject LoRA adapters using peft

4. Prepare your dataset (e.g. Alpaca, custom prompts)

5. Fine-tune on specific task

6. Save/merge LoRA weights

🧠 Code Example: LoRA with πŸ€— Transformers

from peft import LoraConfig, get_peft_model, TaskType
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load base model
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

# Add LoRA adapter
lora_config = LoraConfig(
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.1,
    bias="none",
    task_type=TaskType.CAUSAL_LM,
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()

🧠 Code Example: QLoRA with 4-bit Quantization

from transformers import BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype="bfloat16",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
)

model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    quantization_config=bnb_config,
    device_map="auto",
)

πŸ”¬ Performance

Setup VRAM Used Speed Task Accuracy
Full fine-tune πŸš€ 100+ GB Slow βœ… High
LoRA ⚑ ~8–16 GB Fast βœ… Similar
QLoRA 🧊 ~6–24 GB Very Fast βœ… Similar (with slight trade-offs)

🧠 Common Use Cases

Use Case Model Data
Chatbot fine-tuning Mistral-7B + QLoRA Custom conversation data
Code assistant StarCoder + LoRA Project-specific repos
Medical NLP LLaMA + LoRA Domain-specific QA pairs
HR/Legal summarization Phi + QLoRA Contracts, resumes

πŸ“š Resources & Links

βœ… TL;DR

Concept LoRA QLoRA
Params updated Low-rank adapters Low-rank adapters
Quantization No Yes (4-bit)
Memory use Moderate Very low
Fine-tuning cost πŸ’° Low πŸ’°πŸ’° Ultra low
Use case When you want fast, efficient domain tuning on any budget

Want help:

  • Writing a QLoRA training script?
  • Setting up LoRA + LangChain for RAG?
  • Creating a tutorial or template repo?

Let me know β€” I can build out examples or guides tailored to your use case πŸ’‘πŸ› οΈ